INSTRUCTIONS

Bel-Art
SP SCIENCEUARE ${ }^{m}$

Komet ${ }^{\text {m }}$ Spinbar ${ }^{\circledR}$ Stirring Bar

Catalog No. 37174-0000

The Teflon ${ }^{\circledR}$ Komet ${ }^{\text {m }}$ Spinbar ${ }^{\circledR}$ Magnetic Stirring Bar is made from Samarium-Cobalt magnet and is encapsulated in Teflon ${ }^{\circledR}$ PTFE. That, combined with an octagon shape, produces exceptional power although its length is only 50 mm (1.969) with a 21 mm (.827") diameter. Its eight edges generate strong turbulence to aid in thorough mixing. Its stability is not impaired in vessels with curved bottoms. In addition, the risk of demagnetization caused by external magnetic fields is virtually eliminated. Komet ${ }^{\text {m }}$ Spinbar ${ }^{\oplus}$ transmits torque loads 2 to 3 times larger than those of conventional stirring bars of this length significantly improving efficiency.

OTHER FINE SGIENGEWARE® PRODUGTS FOR YOUR LABORATORY

Color Coded Spinbar ${ }^{\oplus}$ Magnetic Stirring Bars

Catalog Number 37109-0000

- Maintain unique inventory identification by utilizing color-coded magnetic stirring bars for your research projects
- Octagonal shape with a molded pivot ring provides greater surface area and added turbulence

These octagon shaped bars are TEFLON® PTFE coated and are available in red, yellow or blue. Packaged 50/case.

RED

F37109-0034
F37109-0001
F37109-0004
F37109-0007
F37109-0010
F37109-0019
F37109-0028
F37109-0031
*No pivot ring on this size

F37109-0029
YELLOW
F37109-0035* F37109-0005 F37109-0008 F37109-0011 F37109-0020 F37109-0029 F37109-0032

BLUE
F37109-0036* F37109-0003 F37109-0006 F37109-0009 F37109-0012 F37109-0021 F37109-0030 F37109-0033

SIZE

12.7 X $3.2 \mathrm{~mm}\left(1 / 2 \times 1 / 8{ }^{\prime \prime}\right)$
$12.7 \times 8 \mathrm{~mm}\left(1 / 2 \times 5 / 8^{18}\right)$
$16 \times 8 \mathrm{~mm}\left(5 \% \times 5 / 6^{4}\right)$
$22 \times 8 \mathrm{~mm}\left(1 / 6 \times 5 / 16^{\prime \prime}\right)$
$25.4 \times 8 \mathrm{~mm}\left(1 \times 5 / 8^{\prime \prime}\right)$
$38 \times 8 \mathrm{~mm}\left(1 / 2 \times 5 / 1{ }^{16}\right)$
$50.8 \times 8 \mathrm{~mm}\left(2 \times 5 / 8^{18}\right)$
$76 \times 12.7 \mathrm{~mm}(3 \times 1 / 2)$

